Predicting Non-Tidal Loading Contributions Induced by Environmental Loading

Kyriakos Balidakis, Robert Dill, and Henryk Dobslaw

GFZ German Research Centre for Geosciences, Earth System Modelling, Potsdam, Germany

Reference Frames for Applications in Geosciences, Usage & Challenges of Reference Frames for Earth Science Applications

Thessaloniki, October 18th, 2022

Setting the Stage

Motivation

- Mitigate **aliasing** in reference frames
- Validate NWM-derived mass anomalies

In this presentation

- Comparison of *modelled* and *observed* station displacements
- Signal decomposition employing wavelets
- Tools and Materials
 - **GFZ's loading models** (ECMWF's IFS, MPIOM, LSDM)
 - Individual GNSS AC contributions to ITRF2020 (IGS repro 3)

Environmental Loading Displacement Models

d [mm]

d [mm]

- Atmosphere (3h)
 - De-tided ECMWF's IFS
- Oceans (3h)
 - De-tided MPIOM forced from ECMWF's IFS
- Hydrosphere (24h)
 - LSDM forced from ECMWF's IFS
- Barystatic sea-level (24h)
 - Solution to sea-level equation (self-attraction and loading included)

HELMHOLTZ

d mm

d [mm] 10

GNSS Displacements from IGS REPRO 3

- Contributions: COD, ESA, GFZ, GRG, JPL, MIT, NGS, TUG, ULR, WHU, and IGS
- Pre-processing
 - Outlier elimination
 - Time series segmentation
 - Mitigation of secular signals (first-order poly + log + exp)

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

HELMHOLTZ

Frequency Domain Displacement Analysis

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

HELMHOLTZ

Wavelet Decomposition

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

6

Entire Spectrum

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

D1: 2 days – 5 days

HELMHOLTZ

8

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• A: variability far from the coast; O: variability in islands

D2: 3 days – 10 days

HELMHOLTZ

9

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• A: variability far from the coast; O: variability in islands and coastlines

D3: 6 days – 18 days

HELMHOLTZ

10

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• A: variability explained increases for more sites & larger percentage

D4: 12 days – 37 days

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• All continental stations with a 60% RMS reduction \rightarrow A; island stations \rightarrow O

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

HELMHOLTZ

12

D5: 24 days – 3 months

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• Relevance of H increases around big catchments; A \rightarrow continents; O \rightarrow islands

D6: 2 – 5 months

HELMHOLTZ

13

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• A and H of comparative importance over continents, depending on site

D7: 4 – 9 months

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

• H more important GNSS variance reductor

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

D8: 7 months – 1.4 years

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

H even more important GNSS variance reductor

Balidakis, Dill, and Dobslaw (2022) Non-Tidal Loading from GNSS and NWM

A8: 1.1 years – ∞

HELMHOLTZ

16

Center of Surface Figure (CF)

Center of Mass of the Earth System (CM)

H most important GNSS variance reductor

Recapitulation

- Compared NWM-derived non-tidal loading displacements (ESMGFZ)
- to GNSS-derived station displacements (IGS REPRO 3: 10 + 1)
- in frequency domain employing wavelet decomposition
 - Highest RMS reduction: Sites dominated by atmospheric/sea-level loading
 - Lowest RMS reduction: Sites dominated by ocean loading
 - Largest model/observation discrepancies: Sites dominated by hydrological loading at seasonal timescales
 - Best model/observation agreement: Combined solution

Acknowledgements

Data: ECMWF (IFS), IGS (COD, ESA, GFZ, GRG, JPL, MIT, NGS, TUG, ULR, WHU, and combi) Funding: DFG (TerraQ) Computations: DKRZ

Data availability http://rz-vm115.gfz-potsdam.de:8080

HELMHOLT7

17

