

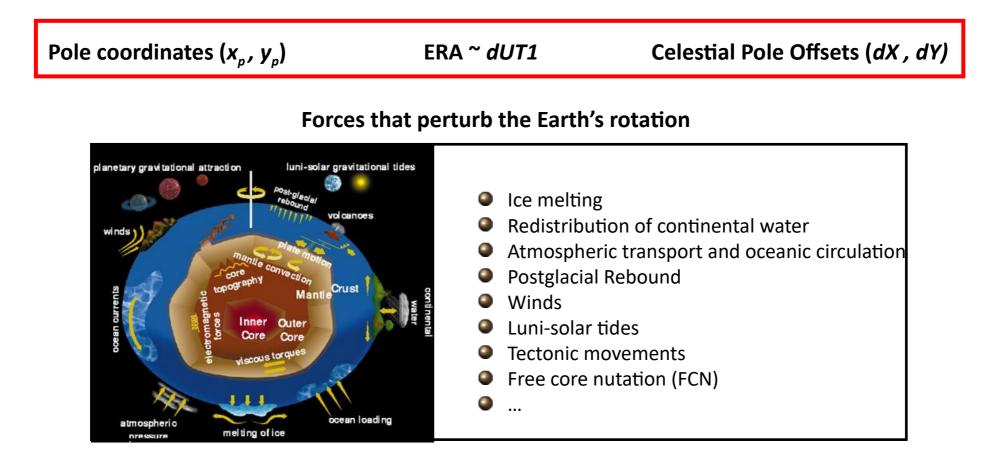
The impact of parameterized source positions on the CPO & free core nutation

Authors:

Santiago Belda, Maria Karbon, Alberto Escapa, José M. Ferrándiz

Affiliation:

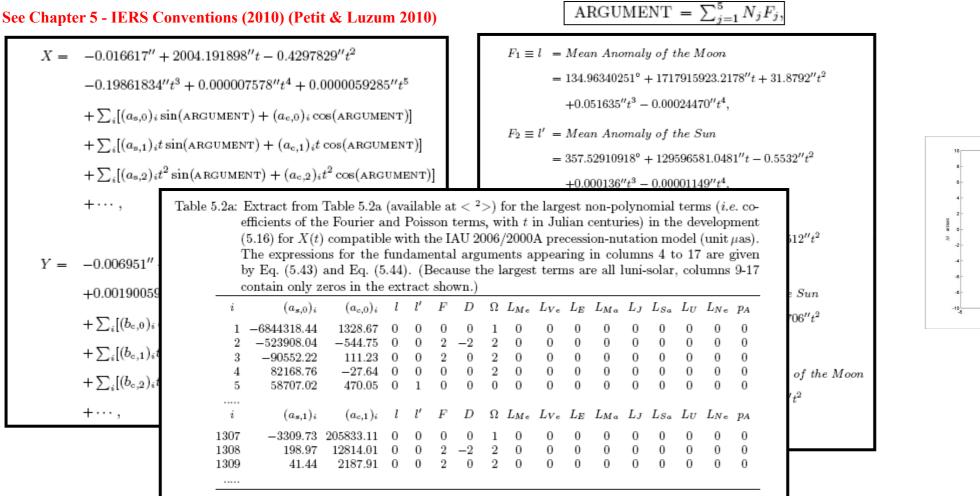
University of Alicante VLBI Analysis Centre (UAVAC), University of Alicante, 03080 Alicante,

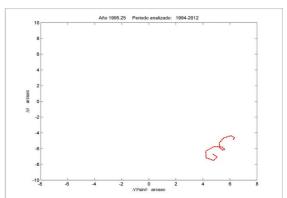

Spain Santiago.belda@ua.es

This research was supported partially by Generalitat Valenciana (SEJIGENT/2021/001, PROMETEO/2021/030), the European Union— NextGenerationEU (ZAMBRANO 21-04) and by Spanish Project PID2020-119383GB-I00 funded by Ministerio de Ciencia e Innovación (MCIN/AFI/10 13039/501100011033/)

Introduction

- Inconsistencies/Problems
- The reassessment of the precession and nutation terms in analogy to the IAU 2006/2000A

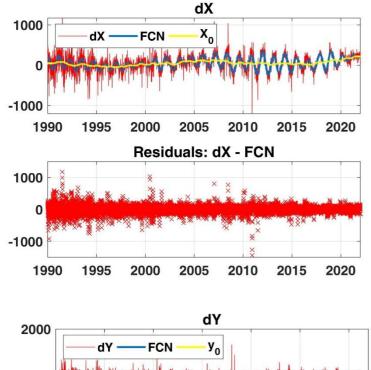

Earth Orientation Parameters (EOP)

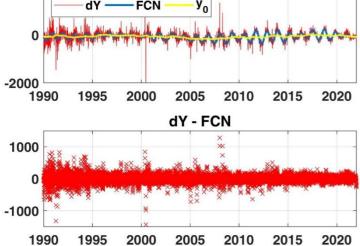


VLBI is the only technique capable to provide and model the five EOP

IAU 2006/2000A precession-nutation model

The IAU 2006/2000A precession-nutation model is provided as a series of luni-solar and planetary nutations in longitude and obliquity, referred to the ecliptic of date, expressed as celestial pole coordinates X and Y with their time variations.

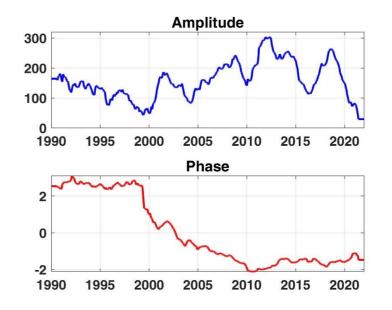




Introduction: CPO & Free Core Nutation (FCN)

- Consideration of the Free Core Nutation (FCN) signal is necessary to improve the modelling of the Celestial Pole Offsets (CPO), since it is the major source of inaccuracy or unexplained time variability with respect to IAU2000 nutation theory.
- FCN can be excited by different geophysical processes not fully understood yet relative to the inertial frame (GCRS).
- VLBI is the only technique capable of accurately determining this signal.
- It has a long retrograde period of about 430 mean solar days (with average amplitude of about 100 μas) relative to the inertial frame.
- Nowadays, different empirical FCN models, derived by procedures with various levels of complexity are available.
- The accurate estimation of the FCN period is a challenging prospect. But, is there any evidence that the period of the FCN varies with time? In 2000 it was unknown whether or not it did. If so, then this would complicate making a model of it.

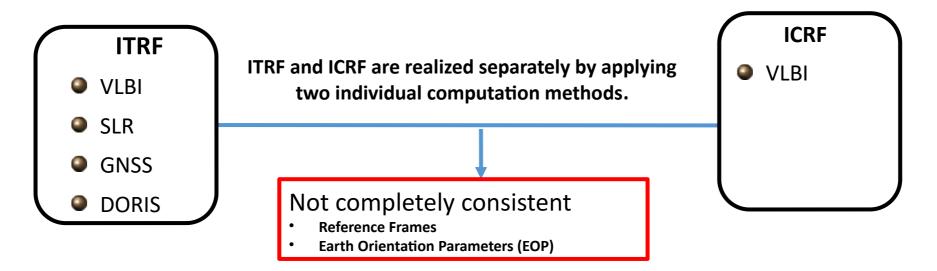
FCN model



FCN models can be approached from computing a weighted least squares fit of these equations:

 $X_{\text{FCN}} = A_C \cos(\sigma_{\text{FCN}}t) - A_S \sin(\sigma_{\text{FCN}}t) + X_0$

 $Y_{\text{FCN}} = A_S \cos(\sigma_{\text{FCN}}t) + A_C \sin(\sigma_{\text{FCN}}t) + Y_0$


Amplitude coefficients are typically estimated by using a sliding window approach with a specific width (e.g 400 days, see Belda et. al 2016).

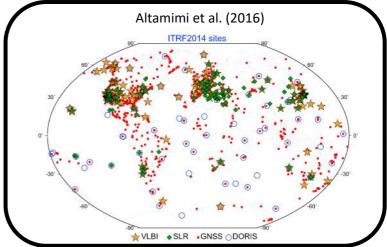
Introduction

Inconsistencies/Problems

The reassessment of the precession and nutation terms in analogy to the IAU 2006/2000A

¹GGOS goals for CRF and TRF: 30 μas and 3 μas/yr (1mm position and 0.1 mm/year) ²JWG ITMER & CRTCE goals for EOP: 30 μas ICRF3 accuracy of orientation is ~ 10 μas (Ma et al. 2009).

¹GGOS: Global Geodetic Observation System


²WG Improving Theories and Models of the Earth's Rotation (ITMER) WG Consistent Realization of TRF, CRF and EOP (CRTCE)

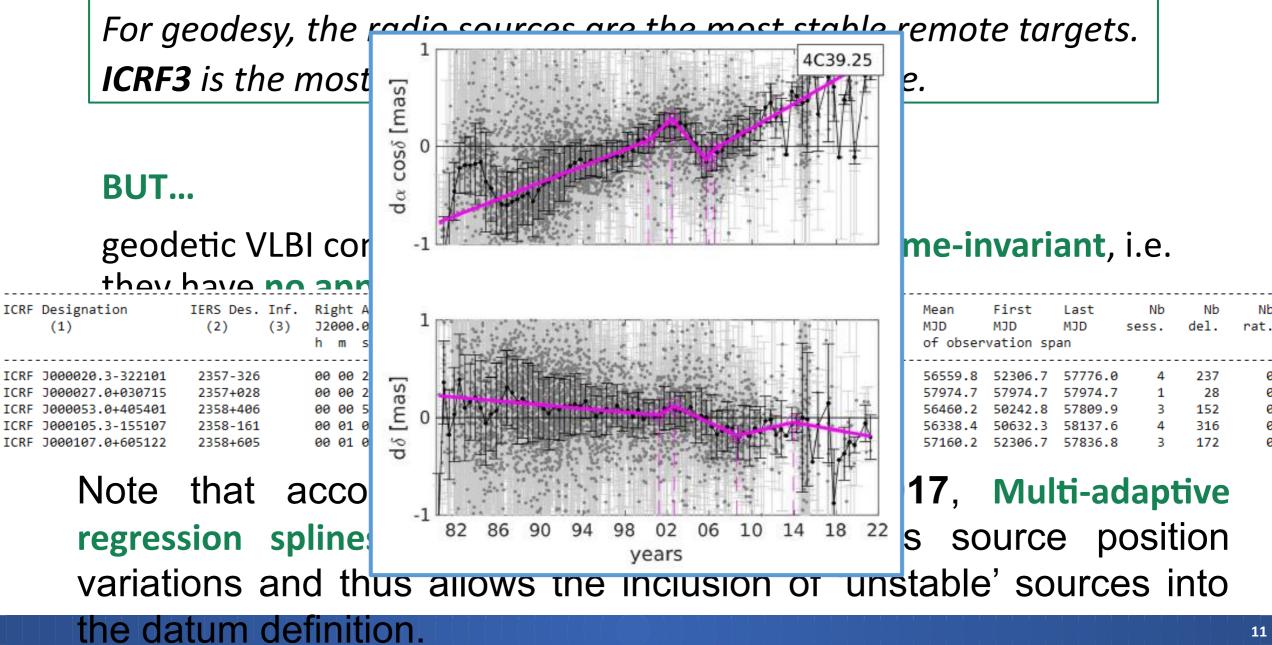
Inconsistencies: Problems 2

o ...

Why cannot we achieve the EOP with better accuracy?

- Poor geographical distribution of observing sites
- Insufficient number of radio telescopes (VLBI)
- Systematic errors of the space geodetic techniques
- Different Time domain of frames
 - ICRF3 <2015</p>
 - ICRF2 <2009</p>
 - ITRF2014 <2014</p>
 - ITRF2008 <2008</p>
- Different models applied
 - ICRF2/ICRF3: atmospheric loading model
 - ITRF2014: no non-tidal atmospheric loading model
- Incompleteness of the theory/models. (IAU 2006/2000A)

For geodesy, the radio sources are the most stable remote targets. **ICRF3** is the most precise and stable frame available.

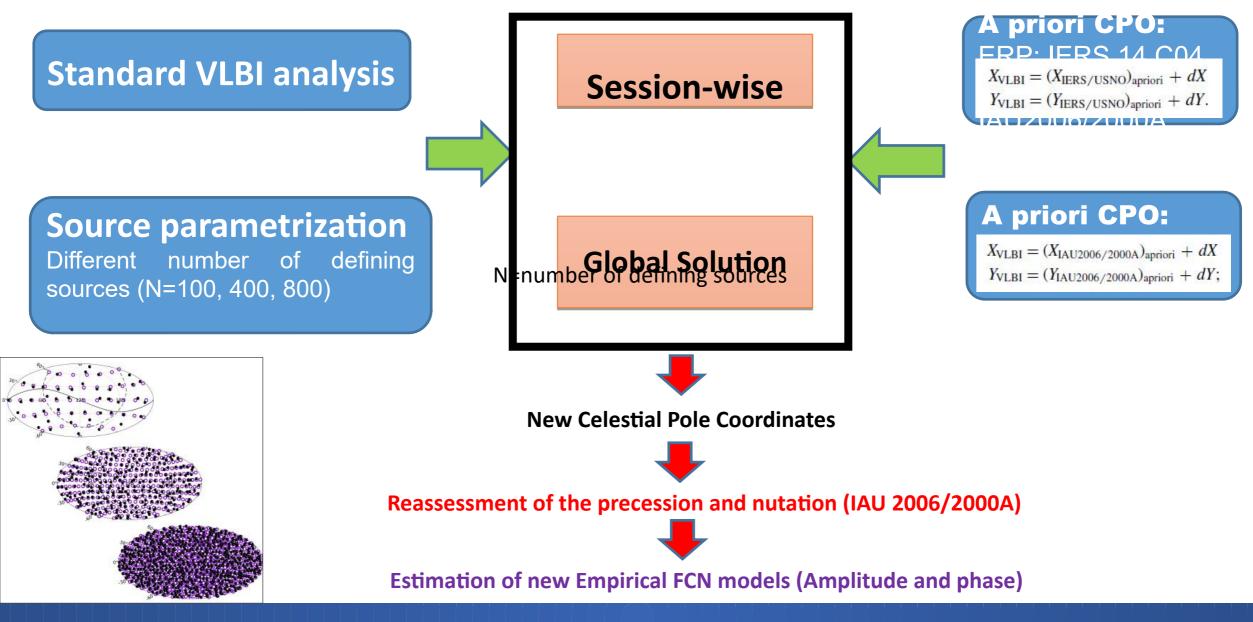

BUT...

. .

geodetic VLBI considers radio source positions as time-invariant, i.e.

	<u>+h ^\/</u>												
ICRF	Designation (1)	IERS Des. Inf. (2) (3)	Right Ascension J2000.0 h m s	Declination J2000.0 o ' "	Uncertainty R.A. s	Dec.	Corr. RA-Dc	Mean MJD of obser	First MJD vation sp	Last MJD an	Nb sess.	Nb del.	Nb rat.
ICRF	J000020.3-322101	2357-326	00 00 20.39997606	-32 21 01.2337415	0.0000804	0.0002624	-0.0602	56559.8	52306.7	57776.0	4	237	0
ICRF	J000027.0+030715	2357+028	00 00 27.02251377	+03 07 15.6463606	0.00005931	0.0003421	-0.0119	57974.7	57974.7	57974.7	1	28	0
ICRF	J000053.0+405401	2358+406	00 00 53.08106320	+40 54 01.8096518	0.00001504	0.0002670	-0.1654	56460.2	50242.8	57809.9	3	152	0
ICRF	J000105.3-155107	2358-161	00 01 05.32873479	-15 51 07.0752302	0.00000702	0.0002261	-0.2106	56338.4	50632.3	58137.6	4	316	0
ICRF	J000107.0+605122	2358+605	00 01 07.09981547	+60 51 22.7980875	0.00003378	0.0001948	0.1619	57160.2	52306.7	57836.8	3	172	0

Note that according to **Karbon et. Al 2017**, **Multi-adaptive regression splines algorithm** (MARS) mitigates source position variations and thus allows the inclusion of 'unstable' sources into the datum definition.


- Introduction
- Inconsistencies/Problems
- The reassessment of the precession and nutation terms in analogy to the IAU 2006/2000A

Objective and Workflow

Goal 1: To empirically evaluate the consistency, systematics and deviations of the IAU 2006/2000A precession-nutation model¹ using VLBI-based celestial pole offsets and MARS for source parametrization.

Goal 2: What is the impact on the CPO/FCN models

¹IAU2000A was fitted to observations in 2000 using only 21 terms (Herring et al. 2002)

- Introduction
- Inconsistencies/Problems
- The reassessment of the precession and nutation terms in analogy to the IAU 2006/2000A

Corrections to the main nutation amplitudes

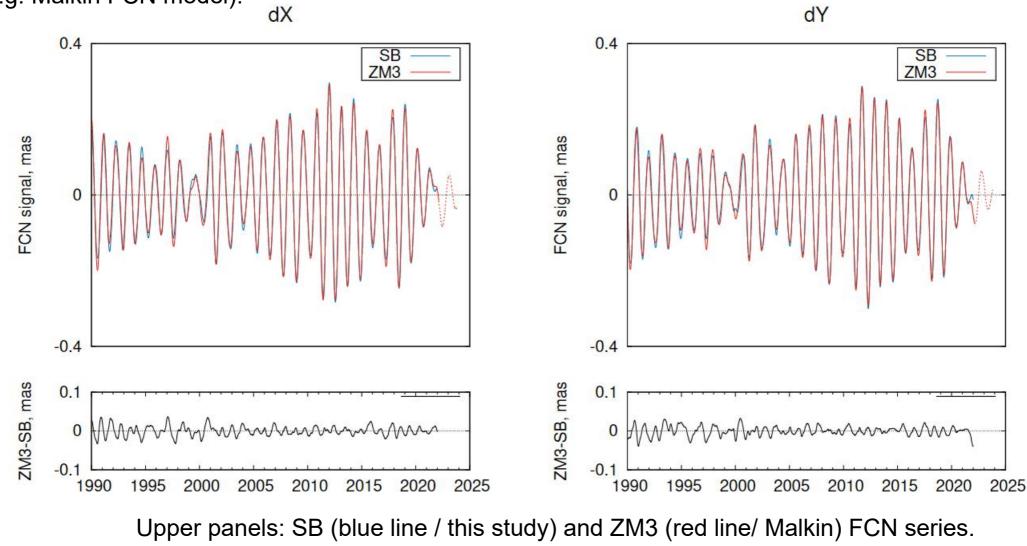
		Median Amplitude		Ra	nge	Median error		
Period (days)	СРО	As	Ac	As	Ac	As	Ac	
-6.798.383	dX	20.609	40.782	23.125	13.122	4.271	1.692	
	dY	15.177	-55.689	12.357	13.390	4.194	2.892	
-3.399.192	dX	-2.489	13.002	5.952	10.743	3.790	1.756	
	dY	-12.040	-19.373	4.917	18.238	3.696	2.902	
-1.615.748	dX	3.043	-1.345	6.451	10.819	3.840	1.723	
	dY	-1.051	-13.605	6.156	5.061	3.665	2.860	
182.621	dX	3.848	-11.758	4.740	7.732	3.858	1.680	
	dY	22.944	15.171	6.204	9.142	3.679	2.739	
169.002	dX	11.513	3.608	7.009	11.740	3.799	1.668	
	dY	1.960	3.753	7.563	6.114	3.650	2.745	
91.313	dX	0.502	-6.366	5.969	3.272	3.704	1.639	
	dY	-5.571		6.877	9.613	3.561	2.689	
29.531	dX	0.952	3.380	7.026	4.027	3.877	1.683	
	dY	8.665	8.457	6.182	3.131	3.714	2.771	
27.555	dX	-6.677	-14.851	8.718	4.219	3.910	1.687	
	dY	15.665	-7.885	2.174	5.990	3.739	2.773	
27.333	dX	4.098	-3.220	5.442	5.760	3.821	1.668	
	dY	5.379	-11.341	5.776	11.531	3.670	2.731	
13.661	dX	-23.080	-8.482	14.510	3.865	3.835	1.657	
	dY	3.894	1.631	9.298	4.347	3.672	2.715	
13.579	dX	8.690	5.070	8.917	11.912	3.806	1.661	
	dY	1.330	-1.867	4.297	8.285	3.641	2.719	
8.910	dX	0.472	-5.762	5.528	1.771	4.065	1.678	
Units: µas	dY	-9.100	-4.188	12.334	7.785	3.904	2.846	

Table contains a summary ofthe most significantamplitudedeviations,ordered by decreasingabsolute values of theperiod.

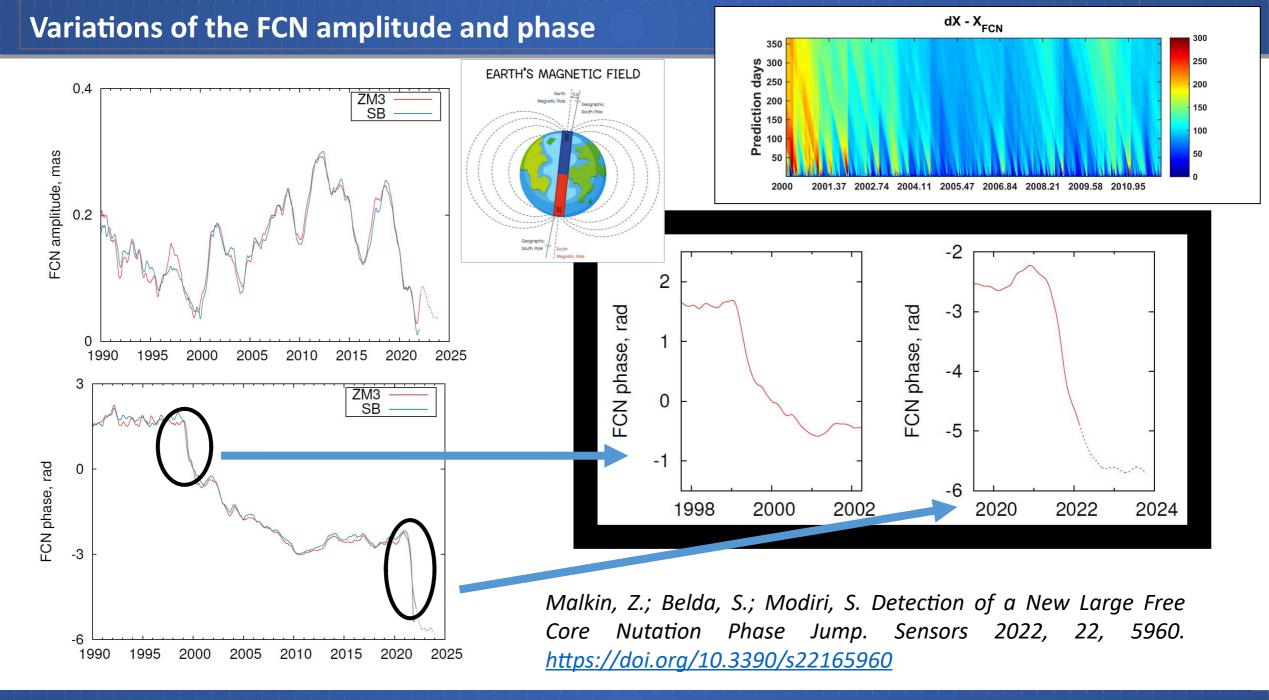
Only the terms with amplitude corrections larger than **3 times the median error** are displayed.

- The total number of frequencies used in the fit was 116
- We found 12 frequencies with amplitude corrections larger than 3 times the median error (≈3 µas)
- Next table contains a summary of the residuals using or not using MARS in the VLBI analysis after fitting

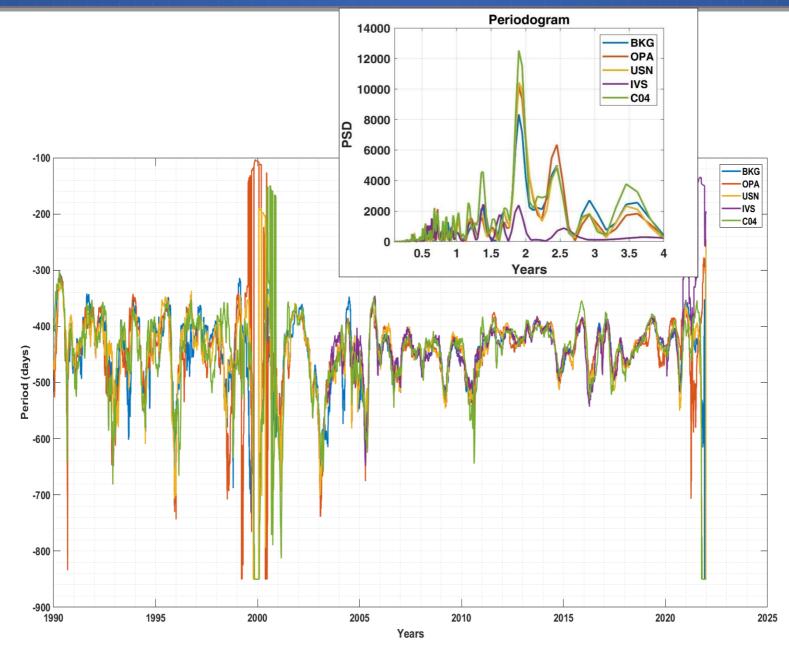
the main nutation amplitudes of the IAU 2006/2000A precession-nutation models and FCN model:


		Session Wise		Global solution		
		Std(dX)	Std(dY)	Std(dX)	Std(dY)	
Standard	Case 1	192.3	188.9	107.7	112.4	
	Case 2	185.5	183.5	88.6	91.5	
N=100	Case 1	289.9	290.4	-	_	
	Case 2	282.2	287.0	-	-	
N=400	Case 1	295.1	286.4	111.1	113.9	
	Case 2	286.2	282.2	92.46	93.1	
N=800	Case 1	292.0	288.7	-	-	
	Case 2	286.2	283.8	-	-	

 $X_{\text{VLBI}} = (X_{\text{IERS/USNO}})_{\text{apriori}} + dX$ $Y_{\text{VLBI}} = (Y_{\text{IERS/USNO}})_{\text{apriori}} + dY.$


 $X_{\text{VLBI}} = (X_{\text{IAU2006/2000A}})_{\text{apriori}} + dX$ $Y_{\text{VLBI}} = (Y_{\text{IAU2006/2000A}})_{\text{apriori}} + dY;$

Free Core Nutation: Comparison w.r.t. Malkin FCN model


The parameterization of source coordinates leads to similar FCN models in comparison to the conventional ones (e.g. Malkin FCN model).

Bottom panels: ZM3 minus SB model differences

Optimum FCN period using a Sliding window of 400 days

Conclusions

0

- In this study, we estimated the CPO making use of different parameterization of source coordinates (i.e. MARS) and different VLBI strategies.
- The inclusion of MARS (Multi-adaptive regression splines algorithm) in the global adjustment is feasible and improves slightly the accuracy of the precession offset and rate.
- As expected, The formal error analyses evidence less accurate results using session-wise analysis.
- Using different approaches (global & session-wise / standard & MARS) results in slight deviations, particularly in the scatter of the CPO residuals.
- The empirical corrections estimated in the reassessment of the precession and nutation terms attain an error reduction by almost 15 µas (≈0.5 millimeters) for both the X and Y components.
- We found 12 frequencies with amplitude corrections larger than 3 times the median error (≈3 µas)
- FCN empirical models agree with established ones.

This research was supported partially by Generalitat Valenciana (SEJIGENT/2021/001, PROMETEO/2021/030), the European Union— NextGenerationEU (ZAMBRANO 21-04) and by Spanish Project PID2020-119383GB-I00 funded by Ministerio de Ciencia e Innovación (MCIN/4EI/10 13039/501100011033/)