Assessment of geodetic products from 24h VGOS session using ITRF2020

Periklis-Konstantinos Diamantidis and Rüdiger Haas

REFAG 2022, 17-20 October, Thessaloniki

Motivation

- The VGOS 24h sessions have been running for several years now and are maturing as a source of geodetic products.
- A combined reference system realization that includes them has now become available in the form of ITRF2020.
 - Previous solutions include the estimation of the station coordinates by aligning the observing network to the ITRF2014 => (Mikschi et al., 2021)

Motivation

- The c04-20 series, the new EOP series that is aligned to the ITRF2020 reference frame, is accessible for evaluation.
- The VGOS 24h sessions are an interesting testbed for gauging the performance of several parameters with respect to the goals set by GGOS.

Analysis Design/Tools

The c5++ data analysis package is used. Our group maintains a forked version we call c5lunar, with modified/added modules.

- Lunar VLBI
- Multi-GNSS
- Adaptive Square-root Kalman filtering

Analysis Design/Tools

We can develop/evaluate different concepts to our hearts desire, as we have access to the source code Examples include:

-> Evaluation of antenna deformation using material temperatures (see the presentation by R. Handirk tomorrow at 09:15)

-> Comparison of VGOS-R sessions with multi-GNSS (see the presentation by R. Haas tomorrow at 15:30)

Analysis Design/Network

A total of 9 stations. Possibility of full deployment since the beginning of 2020.

Actual makeup of sessions:

- 4% with up to 4 stations.
- 76% between 5 and 7 stations.
- 20% between 8 and 9 stations.

Analysis Design/Setup

We used 24h VGOS sessions from 2019-2021 to evaluate station position repeatabilities and earth orientation parameter estimates (EOP).

- For different time resolutions of the tropospheric parameters.
- Clock estimation to 1h intervals.
- Cubic-splines interpolation with 5-day arc for providing a priori EOP.
- Fixing radio sources to ICRF3.
- We haven't incorporated the seasonal models yet in the ITRF2020 utilization.

Results/Network

CHALMERS (%)

Results/Per Station

WESTFORD

MACGO12M

ONSA13NE

Results/Per Station

WETTZ13S

CHALMERS

GGAO12M

KOKEE12M

ISHIOKA

Results/Baseline Length repeatabilities

The baseline repeatability is about 4.5mm at 6000 km

Results/dY settling effect

Results/EOP repeatabilities (w.r.t. CO4)

	EOP-c04-14	EOP-c04-20
	RMS	
UT1-UTC	11.6	13.5
Хр	302.9	286.6
Ур	317.6	272.8
dX	152.2	151.1
dY	173.9	189.3

UT1-UTC slightly improved w.r.t. state-of-the-art Legacy S/X. Polar motion and celestial pole offsets at/or slightly worse than Legacy S/X.

All quantities are in μ as, except for UT1-UTC which is in μ s

Summary and Conclusions

- We were able to apply minimum constraints on the observation network as it is defined in ITRF2020.
- Station position repeatabilities and baseline length repeatabilities outperform the legacy S/X network.
- Troposphere can already be modelled more rigorously, especially on the gradient part.
- There is still road ahead to come closer to GGOS goals.

CHALMERS

Thank you!