

ITRF2020 seasonal geocenter motion model

P. Rebischung, Z. Altamimi, X. Collilieux, L. Métivier, K. Chanard

REFAG 2022, 17–20 October, Thessaloniki

Estimation of ITRF2020 seasonal station motions

• (Simplified) ITRF2020 kinematic model for station i:

- Seasonal motion coefficients a_{1,i}, b_{1,i}, a_{2,i}, b_{2,i}:
 - Estimated for every station i (with sufficient time span)
 - Equated within co-location sites at ± 0.1 mm
 - Looser constraint levels in case of seasonal motion discrepancies between techniques
 - See Collilieux et al., 'Consistency evaluation of seasonal signals in ITRF2020', this afternoon
- Frame definition of seasonal motions
 - No net seasonal rotation of selected core station network
 - No seasonal scale variations between selected input SLR solutions and ITRF2020
 - No seasonal translations between selected input SLR solutions and ITRF2020
 - → Estimated seasonal station motions are expressed with respect to CM (as sensed by SLR).

Estimation of seasonal geocenter motion – Principle

• The seasonal motion of a point (ϕ, λ) of the Earth's surface w.r.t. CM can be decomposed into:

$$\begin{split} \delta X_{/CM}(\phi,\lambda,t) &= \left(\begin{array}{c} \delta X_{/CF}(\phi,\lambda,t) \\ \text{seasonal motion} \end{array} \right)^{+} \left(\begin{array}{c} \delta X_{CF/CM}(t) \\ \text{seasonal geocenter motion} \end{array} \right)^{+} \\ \text{seasonal geocenter motion} \end{split}$$

$$\bullet \quad \text{Besides, by definition of CF: } \frac{1}{4\pi r^2} \int \delta X_{/CF}(\phi,\lambda,t) d\Omega = 0 \\ \xrightarrow{} \quad \frac{1}{4\pi r^2} \int \delta X_{/CM}(\phi,\lambda,t) d\Omega = \delta X_{CF/CM}(t) \end{split}$$

• An estimate of seasonal geocenter motion can be obtained by discretizing the above integral at ITRF sites:

$$\delta X_{CF/CM}(t) \approx \frac{1}{4\pi r^2} \sum_i \delta X_i(t) w_i$$

where the w_i 's are weights corresponding to small surface elements around each ITRF site (and summing up to $4\pi r^2$).

Station selection (1/2)

- Initial selection:
 - Discard stations with ITRF2020 seasonal motions constrained to zero (due to short time spans)
 - Keep only one station per site
 (the one for which the trace of the formal covariance matrix of seasonal coefficients is minimal)
 - Discard stations whose seasonal coefficients have unusually large formal errors
 - → 1142 stations

Station selection (1/2)

• Initial selection:

Arrow length \leftrightarrow Amplitude of seasonal motion (sqrt(a²+b²)). Note different scales for different components. Arrow orientation \leftrightarrow Phase of seasonal motion (arctan(b/a)). Counted anticlockwise from East direction.

Station selection (1/2)

• Initial selection:

Arrow length \leftrightarrow Amplitude of seasonal motion (sqrt(a²+b²)). Note different scales for different components. Arrow orientation \leftrightarrow Phase of seasonal motion (arctan(b/a)). Counted anticlockwise from East direction.

Station selection (2/2)

- Outlier detection:
 - Model field of seasonal coefficients as: low-degree vector spherical harmonic terms + spatially white noise
 - Estimate vector spherical harmonic coefficients by least-squares and white noise variances by VCE
 - Select n_{max} = 7 as truncation degree, as a compromise between whiteness of residuals and overfitting
 - Iteratively reject stations with normalized residuals > 7 in at least one component
 - → 18 outliers / 1124 stations kept
- Note:
 - Alternative seasonal geocenter motion estimates can be obtained from the degree-1 coefficients of a vector spherical harmonic expansion such as described above (see slide 14).

Station selection (2/2)

• Outlier detection:

Arrow length \leftrightarrow Amplitude of seasonal motion (sqrt(a²+b²)). Note different scales for different components. Arrow orientation \leftrightarrow Phase of seasonal motion (arctan(b/a)). Counted anticlockwise from East direction.

- 1. Spherical Voronoï diagram of selected station network
 - Station weights = areas of their Voronoï cells

- 1. Spherical Voronoï diagram of selected station network
 - Station weights = areas of their Voronoï cells

- Problem: Nearby stations sometimes have highly different weights.

- 1. Spherical Voronoï diagram of selected station network
- 2. Smooth 'Voronoï weights'
 - For any two neighbour stations (i, j) separated by a spherical distance $\psi_{i,j}$, impose: $w_i = w_i \pm \sigma \psi_{i,j}$
 - Vary weight of smoothing constraints (i.e., $1/\sigma^2$) by powers of 10

- 1. Spherical Voronoï diagram of selected station network
- 2. Smooth 'Voronoï weights'
 - For any two neighbour stations (i, j) separated by a spherical distance $\psi_{i,j}$, impose: $w_i = w_i \pm \sigma \psi_{i,i}$
 - Vary weight of smoothing constraints (i.e., $1/\sigma^2$) by powers of 10

- Choose smoothing level c): regionally homogeneous weights still accounting for large-scale density heterogeneities

Result: ITRF2020 seasonal geocenter motion model

		amp. [mm]	phase [deg]
annual	Х	1.23 ± 0.16	-123.2 ± 7.2
	Y	3.48 ± 0.15	152.9 ± 2.5
	Ζ	2.76 ± 0.33	-139.5 ± 6.8
semi- annual	Х	0.49 ± 0.15	107.2 ± 18.1
	Y	0.22 ± 0.15	1.6 ± 39.0
	Ζ	1.19 ± 0.33	30.5 ± 15.5

- Sign and phase conventions are such that the seasonal motion of CF w.r.t.
 CM is given by: A₁ cos(2πt - φ₁) + A₂ cos(4πt - φ₂)
- Errors in the table are 1-σ formal errors stemming from the propagation of the covariance matrix of the ITRF2020 seasonal station motion coefficients.
- They account for:
 - the intrinsic uncertainty of the seasonal CM sensed by SLR,
 - the uncertainty of its transfer to the whole ITRF2020 network,
 - random errors in the ITRF2020 station-specific seasonal motions.

- They do not account for:
 - biases of the geocenter motion estimation method used,
 - systematic errors in the ITRF2020 station-specific seasonal motions (i.e., unphysical seasonal motions seen by the geodetic techniques).

Alternative estimates

a – f : Estimates obtained with different smoothing levels of the Voronoï weights (see slide 12)

1 – 9: Estimates obtained from vector spherical harmonics expansions with different truncation degrees (see slide 7)

Alternative estimates

- Estimates obtained with reasonable smoothing levels (a – d) and reasonable truncation degrees (4 – 6) are in good agreement.
- Biases of the estimation method seem small compared to (or at least commensurate with) the formal errors.
- Contribution of systematic errors in ITRF2020 station-specific seasonal motions is also likely small compared to the formal errors.
- → Formal errors provide reasonable estimates of the total errors in the ITRF2020 seasonal geocenter motion model.
- a f : Estimates obtained with different smoothing levels of the Voronoï weights (see slide 12)
- **1 9**: Estimates obtained from vector spherical harmonics expansions with different truncation degrees (see slide 7)

Comparison with other estimates

- ITRF2020 annual geocenter model in good agreement with other estimates, especially the recent global inversions by Wu et al. (2017, 2020).

\star	This study	
*	Abbondanza et al. (2017)	Similar approach, but with 80 stations & uniform weights
▼	Wu et al. (2017)	Similar as above + degree-1 deformation + GRACE
	Wu et al. (2020)	Similar as above, refined
	Wu et al. (2015)	GNSS degree-1 deformation + GRACE + OBP
	Sun et al. (2016)	GRACE + OBP
•	Kuang et al. (2019)	GRACE GPS tracking + accelerometer data
	Altamimi et al. (2016)	SLR CN/CM (no attempt to mitigate network effect)
•	Ries et al. (2016)	SLR CN/CM (no attempt to mitigate network effect)
٠	Ries et al. (2016)	SLR with network effect mitigated
	Zhang et al. (2018)	Geophysical model predictions

Summary

- ITRF2020 seasonal geocenter motion model = weighted average of ITRF2020 seasonal station motions referred to CM (as sensed by SLR)
 - Station weights designed to provide an approximation CF/CM (rather than CN/CM)
- Dominant error source likely to be the intrinsic uncertainty of CM sensed by SLR (+ the uncertainty of its transfer to the whole ITRF2020 network)
 - Biases of the estimation method and contribution of systematic errors in ITRF2020 station-speficic station motions are likely secondary.
- ITRF2020 seasonal geocenter motion model in good agreement with other recent estimates
 - In particular the global inversions by Wu et al. (2017, 2020)
- ITRF2020 website (<u>https://itrf.ign.fr/en/solutions/ITRF2020</u>) provides:
 - 1. Seasonal station motions referred to CM
 - 2. Seasonal geocenter motion model
 - 3. Seasonal station motions referred to CF (1 minus 2)