

DTRF2020: the ITRS 2020 realization of DGFI-TUM

Manuela Seitz, Detlef Angermann, Mathis Bloßfeld, Matthias Glomsda, Sergei Rudenko, Julian Zeitlhöfler

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

Session 1 – Global Reference Frame Theory, Concepts and Computations, 2022-10-19

- Input data series
- Processing strategy: overview
- Reduction of non-tidal loading and post-seismic deformation
- Datum realization
- DTRF2020: preliminary results

Input data

ЛЛ

Input data (same as for ITRF2020)

Technique/Service	#SINEX files*	Time span	Years
VLBI/IVS	6210	1979-2021.0	41
SLR/ILRS	1704	1983-2021.0	38
GNSS/IGS	9851	1994-2021.0	27
DORIS/IDS	1456	1993-2021.0	28

Parameters included: station coord & EOP

	Pole offsets	Pole rates	UT1- UTC	LOD	Nutation offsets
IVS	х	Х	х	х	Х
ILRS	х			Х	
IGS	х	X		x	
IDS	х				

* different temporal resolutions

New situation for DTRF2020 compared to DTRF2014

- Ionger observation time spans for each technique
- new stations, new satellites, new local ties
- several new models had been adopted
 - New general models (e.g., secular pole model)
 - New technique-specific models (e.g., GNSS satellite z-PCVs \rightarrow GNSS provides an independent scale realization!)
- \rightarrow impact on station coordinates, velocities, EOPs as well as on the DTRF geodetic datum is expected

Main characteristics of DTRF2020 computation strategy

ТШ

- based on the combination of NEQs
- Processing line (2step-approach)

1) analysis of data and computation of one TRF per technique

- reduction of non-tidal loading (NTL) and post-seismic deformation (PSD)
- analysis of station position time series and datum parameter and EOP time series
- introduction of station velocities

2) combination of technique NEQs to DTRF2020 solution

New in DTRF2020

• Non-tidal loading (NTL):

all three components (atmospheric, hydrological and oceanic) are provided by GGFC and reduced at the NEQ level

• Post-seismic deformation (PSD):

approximated by a combination of logarithmic and exponential functions and reduced at the NEQ level

ПΠ

DTRF2020 station network: discontinuities

For DTRF2020 we process data of about 1880 observing stations. GNSS provides by far the largest number of stations.

Reduction of non-tidal loading (NTL) corrections

NTL input data

- provided by IERS Global Geophysical Fluid Center (GGFC)
- **atmospheric, hydrological and oceanic** NTL corrections for station positions based on ERA5/ECMWF (*Hersbach et al. 2020*) and TUGOm ocean dynamic model (*Carrere and Lyard, 2003*).

$$\delta x_{\text{load}} = \delta x_{\text{NTL-ATM}} + \delta x_{\text{NTL-CWS}} + \delta x_{\text{NTL-OCN}}$$

• detrended, to ensure that there is not a systematic effect on station velocties

NTL is considered by a reduction of each single input NEQ

$$\widetilde{N} = N$$

$$\widetilde{y} = y - N\delta x_{\text{load}}$$

$$\widetilde{l}^T \widetilde{P} \widetilde{l} = l^T P l + \delta x_{\text{load}}^T (N\delta x_{\text{load}} - 2y)$$

$$\widetilde{x_0} = x_0$$

see also
Glomsda e
al. 2021

Impact of reducing NTL: station coordinates

Reduction of RMS in particular for the up components: all GNSS stations with > 1000 sessions

Impact of reducing NTL: station coordinates

Reduction of RMS: overview over all techniques

Technique/ #stations Service		North	East	Up
VLBI/IVS	72	-2.2	-1.3	-2.1
SLR/ILRS	85	-0.2	-0.1	-0.6
GNSS/IGS	2256	-5.5	-3.3	-16.7
DORIS/IDS	195	-0.6	-0.2	-0.9

all techniques and all components benefit:

- GNSS benefits most, followed by VLBI
- the benefit in North is 2-4 times higher than in East
- the benefit in Up is 4 times of the effect in North (except for DORIS)

Impact of reducing NTL: datum parameters

SLR origin, z-component (intrinsic translation time series)

SLR translation:

- Reduction of RMS and annual signal.
- The semi-annual signal is also slightly reduced.

Impact of reducing NTL: datum parameters

SLR, VLBI and GNSS scale

SLR and VLBI: Reduction of RMS and annual signal. Amplitude decreases from 1.4 mm to 0.5 mm (SLR) and from 2 mm to about 1 mm (VLBI).

Impact of reducing NTL: datum parameters

SLR, VLBI and GNSS scale

GNSS:

- · Reduction of RMS.
- Reduction of the annual signal. Amplitude decreases from 2.6 mm to 1 mm.

Reduction of post-seismic deformation (PSD)

Software APROPOS

approximation by combined logarthmic and exponential functions

$$\delta x_{\text{PSD}} = \sum_{i=1}^{n} A_{li} \log \left(1 + \frac{\Delta t}{\tau_{li}}\right) + \sum_{j=1}^{m} A_{ej} \left(1 - \exp\left(-\frac{\Delta t}{\tau_{ej}}\right)\right)$$

- relaxation times τ are also parameterized \rightarrow non-linear optimization problem
- Approximation per component [XYZ] or [NEU]
- Reduction of PSD model values from input NEQ (like the reduction of NTL)

	Number of stations
GNSS	63
SLR	2
VLBI	7
DORIS	1

- *A* Amplitude of transient function (log or exp)
 - relaxation time of transient function

τ

 Δt time difference to the Earthquake epoch

Reduction of post-seismic deformation (PSD)

Impact on station position (residual) time series

Example: GNSS station Mizusawa, Japan (MIZU) after the Tōhoku Earthquake 2011-03-11

Datum realization of DTRF2020

DTRF2020 origin

• Realized from the full history of SLR observation data

DTRF2020 orientation

• By no-net-rotation conditions for positions and velocities w.r.t. DTRF2014 using a subset of globally distributed GNSS stations; reference epoch 2010.0

Datum realization of DTRF2020: scale

VLBI, SLR and for the first time GNSS provide an independent scale.

Analysis of scale agreement

• by computing DTRF2020 solutions with individual scale parameters set up for GNSS, SLR and VLBI or two of them.

Results:

- VLBI and GNSS: agree within 0.25 mm (epoch 2010.0) and 0.05 mm/yr
- SLR: small offset and drift w.r.t. GNSS and VLBI of 2.2 mm (epoch 2010.0) and -0.1 mm/yr
- → SLR does not affect the DTRF2020 scale
- → But to keep the small offset and drift "visible" for further studies, DTRF2020 scale is realized from VLBI and GNSS only.

DTRF2020 preliminary solution

DTRF2020 preliminary solution

Positions:

Transformation of ITRF2020 to DTRF2020, Epoch 2010.0

	TX [mm]	TY [mm]	TZ [mm]	Scale [mm]	RMS [mm]	#stat
GNSS	1.9	-2.1	0.2	-4.0	0.3	104
SLR	0.2	-0.3	0.1	-2.5	3.0	29
VLBI	2.8	-3.2	-2.7	-2.3	1.1	28
DORIS	0.9	-4.8	-2.1	-9.0	1.0	20

Velocities:		TX [mm/yr]	TY [mm/yr]	TZ [mm/yr]	Scale [mm/yr]	RMS [mm/yr]	#stat
	GNSS	-0.18	0.05	0.05	-0.09	0.05	104
	SLR	0.05	-0.12	0.00	-0.11	0.26	29
	VLBI	-0.10	-0.10	0.03	-0.12	0.15	28
	DORIS	-0.03	0.17	0.07	0.30	0.21	20

ТШП

DTRF2020 preliminary solution

Transformation of ITRF2020 to DTRF2020, Epoch 2010.0

ions:	TX [mm]	TY [mm]	TZ [mm]	Scale [mm]	RMS [mm]	#stat	go
GNSS	1.9	-2.1	0.2	-4.0	0.3	104	a
SLR	0.2	-0.3	0.1	-2.5	3.0	29	
VLBI	2.8	-3.2	-2.7	-2.3	1.1	28	
DORIS	0.9	-4.8	-2.1	-9.0	1.0	20	

Velocities:		TX [mm/yr]	TY [mm/yr]	TZ [mm/yr]	Scale [mm/yr]	RMS [mm/yr]	#stat
	GNSS	-0.18	0.05	0.05	-0.09	0.05	104
	SLR	0.05	-0.12	0.00	-0.11	0.26	29
	VLBI	-0.10	-0.10	0.03	-0.12	0.15	28
	DORIS	-0.03	0.17	0.07	0.30	0.21	20

DTRF2020 preliminary solution

Positions:

Transformation of ITRF2020 to DTRF2020, Epoch 2010.0

	TX [mm]	TY [mm]	TZ [mm]	Scale [mm]	RMS [mm]	#stat	
GNSS	1.9	-2.1	0.2	-4.0	0.3	104	
SLR	0.2	-0.3	0.1	-2.5	3.0	29	U
VLBI	2.8	-3.2	-2.7	-2.3	1.1	28	
DORIS	0.9	-4.8	-2.1	-9.0	1.0	20	

good agreement systematic differences in scale offset and drift

Velocities:		TX [mm/yr]	TY [mm/yr]	TZ [mm/yr]	Scale [mm/yr]	RMS [mm/yr]	#stat
	GNSS	-0.18	0.05	0.05	-0.09	0.05	104
	SLR	0.05	-0.12	0.00	-0.11	0.26	29
	VLBI	-0.10	-0.10	0.03	-0.12	0.15	28
	DORIS	-0.03	0.17	0.07	0.30	0.21	20

DTRF2020 preliminary solution

Transformation of ITRF2020 to DTRF2020, Epoch 2010.0

Positions:		TX [mm]	TY [mm]	TZ [mm]	Scale [mm]	RMS [mm]	#stat	good
	GNSS	1.9	-2.1	0.2	-4.0	0.3	104	agreement
	SLR	0.2	-0.3	0.1	-2.5	3.0	29	differences
	VLBI	2.8	-3.2	-2.7	-2.3	1.1	28	in scale
	DORIS	0.9	-4.8	-2.1	-9.0	1.0	20	offset and drift

S nce

Velocities:		TX [mm/yr]	TY [mm/yr]	TZ [mm/yr]	Scale [mm/yr]	RMS [mm/yr]	#stat	difference
	GNSS	-0.18	0.05	0.05	-0.09	0.05	104	in scale offset and drift for DORIS
	SLR	0.05	-0.12	0.00	-0.11	0.26	29	
	VLBI	-0.10	-0.10	0.03	-0.12	0.15	28	
	DORIS	-0.03	0.17	0.07	0.30	0.21	20	

ТШП

DTRF2020 preliminary solution: EOP

LOD: SLR shows periodic signals w.r.t. GNSS and VLBI

EOP difference series w.r.t. IERS 20 C04: terrestrial x-pole

WRMS of EOP time series w.r.t. IERS 20 C04

Xpole	Ypole	Δ UT1	Nut_x	Nut_y	Xpole rate	Ypole rate	LOD
[µas]	[µas]	[µs]	[µas]	[µas]	[µas/d]	[µas/d]	[µs/d]
56.2	48.4	28.6	77.0	79.7	108.2	110.0	19.7

ΔUT1:

periodic signal of 13.66 days, and amplitude of 38 µs w.r.t. IERS 20C04.

→ Modelling differences?

Outlook and DTRF2020 release

Outlook

- A DTRF2020 preliminary solution will be available within the next weeks.
- Some initial external validations are currently being carried out.

The DTF2020 release will contain

- SINEX files of the combined solution and per technique (station coordinates only) with full variance-covariance matrix (full SINEX file of DTRF2020 solution on request)
- EOP data file
- NTL model values (time series per station and removed offset and drift)
- PSD: parameters of approximation functions as well as approxiation time series
- Station position residual time series
- SLR origin (translation) time series

DTRF2020: the ITRS 2020 realization of DGFI-TUM

Manuela Seitz, Detlef Angermann, Mathis Bloßfeld, Matthias Glomsda, Sergei Rudenko, Julian Zeitlhöfler

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

Thank you for your attention!

Session 1 – Global Reference Frame Theory, Concepts and Computations, 2022-10-19