

Comparison of ITRF2020 residual displacements with environmental loading models

J-P. Boy⁽¹⁾, P. Rebischung⁽²⁾ & Z. Altamimi⁽²⁾

(1) EOST/ITES, Strasbourg, France.(2) IGN/IPGP, Paris, France.

Comparison of ITRF2020 residual displacements with environmental loading models

- Daily GPS residuals from IGS repro3 daily combined solutions, after removing linear trends, offsets, post-seismic relaxation. No scale adjusted for the alignment (1483 series, 949 with duration exceeding 3000 days).
- Loading models (atmosphere + induced ocean & hydrology) based on:
 - ERA5 with IB or TUGOm (update of Carrère & Lyard, 2003), computed for ITRF2020 (GGFC product)
 - MERRA2 (only IB)
- Investigation of the reduction of variance & annual contribution when correcting for loading effects (horizontal & vertical components).
- All loading products are available at EOST Loading Service (displacements, geocenter and Stokes coeff.) at http://loading.u-strasbg.fr

General characteristics of loading models (atmosphere & continental hydrology)

MERRA2: Modern-Era Retrospective analysis for Research and Applications, Version 2, NASA/GSFC GMAO. **ERA5**: Fifth generation ECMWF atmospheric reanalysis.

TUGOm: finite element barotropic ocean model forced by ERA5 winds & pressure (update from Carrère & Lyard, 2003).

Variability : stdv after removing seasonal + trends

GPS daily series: annual & variability

ALGO, Algonquin, Canada

KOUR, Kourou, French Guiana

STR1, Mount Stromlo, Australia

Comparison of ITRF2020 residual displacements with environmental loading models

- In mid- and high-latitude regions, GNSS solutions and modeled loading effects (atmosphere + ocean + hydrology) have similar spectrum content and amplitude up to about 10 days, for both horizontal and vertical components.
- In general, differences are larger for island or coastal stations, compared to inland stations.
- In low-latitude regions, loading effects are small (except seasonal and atmospheric tides) and GPS solutions are about 10-times "noisier".
- Ice sheets are not included in ERA5 and MERRA2 (neither surface water).

Reduction of annual signal (ERA5 vs MERRA2)

Reduction of annual signal (ERA5, IB vs TUGOm)

Reduction of variability (ERA5 vs MERRA2)

Reduction of variability (ERA5, IB vs TUGOm)

 σ_{load}

Normalized reduction of variability

(with respect to the load)

General statistics (ERA5/TUGO or IB + hydro)

General statistics (ERA5/TUGO with/without hydro)

Conclusions & perspectives

- There is a clear & systematic reduction of the seasonal signal (except for some island and coastal stations) and the variability when removing loading effects, for both vertical and horizontal components. This is a clear improvement, compared to earlier reanalyses (see, for example, Mémin et al., 2020).
- TUGOm (barotropic ocean model forced by ERA5 pressure & winds) seems better than the classical IB assumption (mid- & high-latitude stations).
- MERRA2 hydrology is slightly better than ERA5 (Northern America and Western Europe) => an offline "hydrology-only" reprocessing (ERA5-land) is now available.
- Loading effects cannot explain GNSS variability (H: ~1.25 & V: ~3 mm) between 2 & 10 days.
- Next step is to use loading models at the observation level.