

Precise VLBI/GNSS ties with micro-VLBI

Leonid Petrov¹, Johnathan York², Joe Skeens², Richard Ji-Cathriner², David Munton² and Kyle Herrity²

NASA GSFC
 University of Texas in Austin

Why ties are important?

Each techniques has its strengths and weaknesses.

- Temporal resolution (GNSS)
- Spatial coverage (DORIS)
- Reference to the inertial space (VLBI)
- Reference to the center of mass (SLR)

Tying GPS, DORIS, VLBI, SLR, we create a virtual "super-site"

In order to exploit all benefits, ties should be

- accurate
- reliable

Benefits of precise VLBI/GNSS ties

- VLBI+GPS super-site positions are anchored to the same origin
- VLBI+GPS super-site orientation is anchored to the inertial space
- Combined processing VLBI+GPS will determine UT1 and the residual rotation of the of GNSS satellite nodes.
 As a result, GNSS will be able densify UT1 time series.

Ties between techniques: why it so difficult?

- Technique "A" does not see objects of technique "B"
- Reference points of techniques "A" and "B" are virtual
- Reference points account for systematic errors
- Intermediate objects are introduced with known(?) offsets
- Ties are measured vector between intermediate objects with technique "C"
- Technique "C" may have excellent repeatability, but unknown biases

Can we overcome these difficulties?

We need new ideas . . .

Measurement concept

Determine the baseline between electrical phase centers directly

Receiver modification

- 1. remove a filter
- 2. attach a coaxial cable to get amplified RF signal
- 3. digitize a RF signal within 1.0-2.0 GHz band
- 4. record a stream of samples

GNSS antenna element remains unchanged

Signal processing

- 1. Computation of pseudorange
 - Downconversion and filtering
 - Replica generation
 - Integration

2. Computation of phase and group delays

- Polyphase resampling to 64 MHz
- Conversion to VDIF format (VLBI standard)
- Correlation with DiFX
- Fringe fitting with PIMA
- Computation of theoretical path delay with VTD
- Parameter estimation with pSolve

Scheme of a VLBI experiment at FD-VLBA/GNSS

Fort Davis VLBA

Slide 8(15)

FD-VLBA/GNSS interferometer

	FD-VLBA	GNSS
Diameter:	25 m	0.38 m
Zenith sensitivity	300 Jy	2 MJy
Clock	H-maser	Rubidium
Recorded bandwidth	2x128 MHz	8x40.912 MHz
Slewing rate	$1.5^{\circ}/{ m s}$	∞
Baseline length	90 m	

Detected signal from a GNSS satellite

Frequency range: [1543.112, 1607.112] MHz

Detected signal from a GNSS satellite

Slide 11(15)

Detected radio galaxies

Fringe phase of Cyg A

To do list

- Process observations of galactic OH masers (2022)
- Run observations with an H-maser (2022)
- Get phase delays of the signal carrier (2023)
- Develop capabilities to process VLBI observations of GNSS satellites at short and long baselines (2023)
- Estimate a tie vector FD-VLBA and permanent GNSS (2024)
- Extend the frequency range of VGOS antennas down to 1.5 GHz

Summary:

- New technology of micro-VLBI with a GNSS antenna has emerged
- Stable fringes were found in observations of GNSS satellites
- Radiogalaxies were detected at a baseline between a GNSS antenna and VLBA
- Tie measurements between VLBI and GNSS antennas using VLBI are feasible

This work is supported by NASA grant NNX17AD29