Assessing the potential of VLBI transmitters on next generation GNSS satellites for geodetic products

Shrishail Raut^{1,2}, Susanne Glaser¹, Nijat Mammadaliyev^{1,2}, Rolf König¹, Patrick Schreiner¹, Harald Schuh^{1,2}

¹GFZ German Research Centre for Geosciences, Potsdam, Germany ²Technische Universität Berlin, Chair of Satellite Geodesy, Berlin, Germany₁

> REFAG 2022 October 17-20, 2022

Motivation	Strategy	Results	Conclusions	Outlook	References
O	00000	000000	O	00	
Outline					

- Setup
- Scheduling
- Simulation scenarios
- Station and source selection 5
- Satellite

3 Results

- Orbit recovery
- Helmert parameters
- Formal errors of parameters
- 4 Conclusions
 - Outlook

Motivation	Strategy	Results	Conclusions	Outlook	References
●	00000	000000	O	00	
Motivation					

- Global effort to improve the space geodetic techniques contributing to the Global terrestrial reference frames
- Global Geodetic Observing System (GGOS) scientific requirements have not been fulfilled yet
- Investigation of new observation types to the GNSS satellites and its impact on the geodetic parameters (German Research Foundation funded project NextGNSS4GGOS)
- The new observation type includes transmitters on NextGNSS satellites for Very Long Baseline Interferometry observations (VLBI) and retro-reflectors for Satellite Laser Ranging (SLR) and optical inter-satellite links
- In this study, we focus on the observations of the VLBI transmitter on one Galileo-like MEO satellite

Motivation	Strategy	Results	Conclusions	Outlook	References
0	●○○○○	000000	O	00	
Setup					

Simulation strategy

- Software: EPOS-OC (Zhu et al., 2004)
- Station network: 16 stations
- Sources: 64 sources
- GNSS satellite: 1 MEO satellite (with VLBI transmitter)
- Epoch: 10 days

NextGNSS

4GG

GFZ

Recovery of observations

- POD with VLBI to satellite (Mammadaliyev et al., 2022)
- Generation of daily normal equation systems (NEQs) for two scenarios (more on the following slides)

Solution

- Estimated parameters, e.g., orbital parameters (Kepler elements and reduced ECOM parameters), station positions, Earth Rotation Parameters (ERP)
- Stacking of daily NEQs

Motivation	Strategy	Results	Conclusions	Outlook	References
O	○●○○○	000000	O	00	
Scheduling					

Parameters	
Observation bands	S/X
Min. elevation for satellite observation (deg)	3
Min. elevation for quasar observation (deg)	3
Min. quasar obs. at start and end of session (mins)	60
Ratio between quasar and satellite observation	6.5
Noise added to all participating stations	30 ps (\sim 10 mm)

Motivation	Strategy	Results	Conclusions	Outlook	References
O	○○●○○	000000	O	00	
Simulation s	cenarios				

Scenario 1

VLBI: Quasars only

• NNT and NNR conditions applied (1 mm)

Scenario 3

GNSS-only

- 24 MEO satellites and 124 globally distributed GNSS stations
- NNR condition applied (1 mm)

Scenario 2

- VLBI to quasars + 1 MEO satellite
- Kepler elements and reduced ECOM parameters estimated

Scenario 2a

• NNT and NNR conditions applied (1 mm)

Scenario 2b

• NNR condition applied (1 mm)

Station network selection

- R1 IVS network, i.e., 13 stations
- Addition of 3 stations located in the Southern Hemisphere to improve geometry

Quasar source selection • 64 sources

Station network NYALES2 BADARY ZELENCHK 40°N **SUKUB3**2 AOKEE ٥° FORTLEZA ATH12M HARTRAO 40°S GOCONC HOBART12 80% 20°W M°08 80°E ô 20°E 180° °80 $\blacktriangle -R1; \quad \bigstar -Additional; \quad \bullet -Datum station$

Motivation	Strategy	Results	Conclusions	Outlook	References
O	○○○○●	000000	O	00	
Satellite					

Observed ground track of the satellite

- The specifications of the selected MEO satellite are like Galileo i.e., the semi-major axis is 29600 km
- The following figure shows the ground path of the satellite for one day

Ground track

Motivation	Strategy	Results	Conclusions	Outlook	References
O	00000	●00000	O	00	
Orbit recovery	/				

Satellite position difference

- We recovered the orbit
- Scenario 2a: Recovered on the mm level (NNT/NNR)
- Scenario 2b: For along-track, it is up to the dm level, and for cross-track, radial components, on mm and cm levels, respectively (NNR)

Time-series of the differences for one day (RMS value)

Motivation	Strategy	Results	Conclusions	Outlook	References
O	00000	○●○○○○	O	00	
Helmert para	meters				

7-parameter Helmert transformation parameters (Stacked solutions of 10 days)

• Computed between estimated station positions of scenarios 1, 2a, 2b, and 3 w.r.t. their a-priori and corresponding standard deviations

 Motivation
 Strategy 00000
 Results 00000
 Conclusions 0
 Outlook 0
 References

 Formal errors of parameters

Expected improvement

- We computed the expected improvement due to different Degrees of Freedom (DOF) for the added satellite observations
- The expected improvement in formal errors is around 6%

No. of Observations

 Blue and red represents quasar and satellite observations for one day

GFZ

POTSDAM

 Motivation
 Strategy 00000
 Results 00000
 Conclusions 0
 Outlook 00
 References

 Earth rotation parameters (time series)

Comparison of ERP corrections (10 days)

- Scenario 1, 2a, and 2b can determine dUT1 in an absolute sense
- In scenario 3, dUT1 from VLBI is fixed for the first day, and it can only determine LOD

Comparison of formal errors in ERP (10 days)

- PX and PY from scenarios 1, 2a, and 2b are slightly worse than scenario 3 (GNSS)
- As scenario 3 determines dUT1 from estimated LOD, we observe high formal errors

Motivation	Strategy	Results	Conclusions	Outlook	References
O	00000	000000	•	00	
Conclusions					

Summary

- We performed simulations to VLBI transmitter on a MEO satellite with POD in addition to quasars for a period of 10 days
- Orbit recovery
 - Scenario 2a (NNT/NNR): mm level
 - Scenario 2b (NNR): Along-track, up to the decimeter level, and for cross-track, radial components, it's up to a few cm
 - This is despite having fewer satellite observations
- Helmert Parameters: No NNT condition necessary for VLBI with satellite. Datum can be realized with mm-level
- Addition of the observations to one MEO satellite improves the parameters

20/10/2022

Motivation	Strategy	Results	Conclusions	Outlook	References
O	00000	000000	O	●○	
Outlook					

Future work

- Combination of 'VLBI: quasar+satellite' case with GNSS via space-tie (Mammadaliyev et al., 2021)
- Introducing new observation types such as 'Inter-satellite links' (Giorgi et al., 2019; Glaser et al., 2020; Michalak et al., 2021)

20/10/2022

Thank you for listening!

raut@gfz-potsdam.de

Raut et al. (GFZ), Potential of VLBI transmitter

20/10/2022 17 / 18

Motivation	Strategy	Results	Conclusions	Outlook	References
0	00000	000000	O	00	
References					

- Giorgi, G., Kroese, B., and Michalak, G. (2019). Future GNSS constellations with optical inter-satellite links. Preliminary space segment analyses. In 2019 IEEE Aerospace Conference, pages 1–13.
- Glaser, S., Michalak, G., König, R., Neumayer, K. H., Männel, B., and Schuh, H. (2020). Reference system origin and scale realization within the future GNSS constellation "Kepler". Journal of Geodesy, 94(117).
- Mammadaliyev, N., Glaser, S., Neumayer, K. H., Schreiner, P., Balidakis, K., Konig, R., Heinkelmann, R., and Schuh, H. (2022). On the potential contribution of VLBI to geocenter realization via satellite observation (to be submitted). Advances in Space Research.
- Mammadaliyev, N., Schreiner, P. A., Glaser, S., König, R., Neumayer, K., and Schuh, H. (2021). Simulation of space-tie satellites providing co-location in space. In Frontiers of Geodetic Science 2021.
- Michalak, G., Glaser, S., Neumayer, K., and König, R. (2021). Precise orbit and earth parameter determination supported by leo satellites, inter-satellite links and synchronized clocks of a future gnss. Advances in Space Research, 68(12):4753–4782. Scientific and Fundamental Aspects of GNS5 - Part 2.
- Zhu, S., Reigber, C., and König, R. (2004). Integrated adjustment of CHAMP, GRACE, and GPS data. Journal of Geodesy, 78(1-2):103-108.

20/10/2022